반응형
근궤적의 정의와 성질
근궤적(Root Locus)은 제어 시스템의 안정성과 성능을 분석하는 데 사용되는 중요한 도구로, 시스템의 극점(폴)의 움직임을 분석하여 제어 시스템의 동적 특성을 평가합니다. 근궤적은 시스템의 이득이 변화함에 따라 극점이 복소 평면에서 어떻게 이동하는지를 시각적으로 나타냅니다.
근궤적의 정의
근궤적은 시스템의 개루프 전달 함수의 극점(폴)이 폐루프 전달 함수에서 어떻게 변화하는지를 나타내는 그래픽적 방법입니다. 특정 제어 이득 값에 대해 시스템의 극점이 복소 평면에서의 경로를 그린 것입니다. 근궤적을 통해 시스템의 극점이 이동하는 경로를 시각적으로 분석함으로써 시스템의 안정성과 동적 응답을 평가할 수 있습니다.
근궤적의 성질
- 근궤적의 기초
- 정의: 근궤적은 개루프 시스템의 극점이 폐루프 시스템에서 이득 가 변할 때 복소 평면에서 어떻게 이동하는지를 나타내는 선도입니다.
- 목표: 제어 이득 에 따라 극점이 복소 평면에서 어떤 경로를 따라 이동하는지를 시각적으로 표현합니다.
- 근궤적의 생성
- 개념: 근궤적을 그리기 위해서는 개루프 전달 함수 의 극점(폴)과 영점(zero) 위치를 알아야 합니다.
- 프로세스: 제어 이득 가 0에서 시작하여 무한대로 증가할 때, 극점이 이동하는 경로를 플로팅하여 근궤적을 생성합니다.
- 극점과 영점의 위치
- 극점: 근궤적의 주요 요소로, 개루프 전달 함수 의 극점이 폐루프 시스템에서 어떻게 변화하는지를 나타냅니다.
- 영점: 개루프 전달 함수의 영점이 극점의 이동에 영향을 미칩니다. 영점의 위치는 극점의 이동 경로를 결정짓는 중요한 요소입니다.
- 근궤적의 기본 성질
- 극점 이동: 제어 이득 가 증가함에 따라 극점이 복소 평면에서 이동하는 경로를 보여줍니다. 이 경로는 시스템의 안정성 및 동적 응답에 대한 중요한 정보를 제공합니다.
- 영점의 영향: 영점이 있는 경우, 극점은 영점의 위치에 따라 다른 경로를 이동할 수 있습니다. 영점은 극점 이동 경로를 수정하거나 변형할 수 있습니다.
- 대칭성: 근궤적은 복소 평면에 대해 대칭적입니다. 즉, 극점이 이동하는 경로는 복소 평면의 실수축에 대해 대칭적인 성질을 가집니다.
- 안정성 분석
- 안정성: 근궤적을 사용하여 시스템의 안정성을 분석할 수 있습니다. 극점이 왼쪽 반평면에 위치하면 시스템이 안정적입니다. 극점이 오른쪽 반평면으로 이동하면 시스템이 불안정합니다.
- 동적 응답: 극점의 위치에 따라 시스템의 동적 응답, 즉 과도 응답의 특성(예: 오버슈트, 발산 속도 등)을 분석할 수 있습니다.
- 근궤적의 특성
- 시작점과 끝점: 근궤적은 일반적으로 극점에서 시작하여 영점으로 이동합니다. 만약 영점이 없으면 극점은 무한대로 이동합니다.
- 개수: 근궤적의 수는 개루프 전달 함수의 극점의 수와 같습니다. 즉, 극점의 수만큼 근궤적이 존재합니다.
- 근궤적의 그래프 해석
- 해석: 근궤적의 그래프를 통해 시스템의 동적 특성을 시각적으로 분석하고, 필요한 제어 이득 를 선택하여 시스템의 성능을 조절할 수 있습니다.
- 설계: 제어 설계 시, 근궤적을 사용하여 원하는 동적 특성을 가진 시스템을 설계하고, 시스템의 안정성을 보장할 수 있습니다.
반응형
'전기' 카테고리의 다른 글
스칼라와 벡터 비교 (전자기학) (0) | 2024.07.28 |
---|---|
시퀀스 제어계-AND,OR,NOT,NAND,NOR 회로 (제어공학) (0) | 2024.07.28 |
나이퀴스트의 특징 (제어공학) (0) | 2024.07.28 |
제어계의 안정성 조건 (제어공학) (0) | 2024.07.28 |
보드 선도의 정의,진폭비,위상차이 (제어공학) (0) | 2024.07.28 |